Measures of Dispersion,
Moments and Skewness -

4.1 INTRODUCTION

It is quite possible that two or more sets of data may have the same
average (mean, median or mode) but their individual observations may
differ considerably from the average. Thus a value of central tendency
does not adequately describe the data. We therefore need some
additional information concerning with how the data are dispersed about
the average. This is done by measuring the dispersion by which we mean

(the extent to which the observations in a sample or in a population vary
about their mean. A quantity that measures this characteristic, is called

a measure of dispersion, scatter or variability) It is desirable to have the

measure of dispersion (i) in the same units as the observations, (ii) zero
when all the observations are equal, (iii) independent of origin, (iv)
multiplied or divided by the constant when each observation is
multiplied or divided by a constant. It is also desirable that it should
satisfy the conditions similar to those laid down for an average in

previous chapter (see section 3.2). e ¢

A€  (There are two types of measures of dispersion) qhmluzg and relative.
) An absolute measure of dispersion is one that measures the dxsperslon in
terms of the same units or in the square of units, as the units of the data.
- For example, if the units of the data are rupees, metres, kilograms, etc.,
. the units of the measures of dispersion will also be rupees, metres,
1 kilograms, eu-/& relative measure of dispersion is one that is expressed
in the form of a ratio, co-efficient or percentage and is independent of the
units of measurement. It is useful for comparison of data of different

dispersion gives an udoquau ducnption of data. ¥ 4
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4.2 THE RANGE
The range R, is defined as the difference between the la

the smallest observations in a set of data. Symbolically, the 1
given by the relation

R=x,-xg

where x,, stands for the largest observation and x, denotes the smallest
one. When the data are grouped into a frequency distribution, the range
is estimated by finding the difference between the upper boundary of the
highest class and the lower boundary of the lowest class. The range
cannot be computed if there are any open-end classes in the dlstnbntion.

| F.d/"'ﬂa'ﬂxe raf‘f\’ge is a simple concept and is eaasy to compute, It m EE b
b s however, two serious disadvantages. First, it 1gﬂores all the information
available from the intermediate observations; and se'i‘ond as its value is
based only on the two extreme (unusually large or small) observationsyit
might give a misleading picture of the spread in the data. It is therefore = =
an unsatisfactory measure of dispersion. However, (it is appropriately |

@’used in statistical quality control charts of manufactured products, ﬂl) o <N
temperatures,) stock prices, etcy This is an absolute measure of

dispersibn. Its relative measure known as the co-efficient of d:spenwn,
is defined by the following relation: _

xm—xo

vCo-efficient of Dispersion = F= ‘ &
m 0 P

This is a pure (ie-dimensionless) number and is used for the

purposes of comparison. ’
Example 4.1 The marks obtained by 9 students are given below:

45, 32, 37, 46, 39, 36, 41, 48, 36.

‘‘‘‘‘ . __ i‘ind the range and the co-efficient of dispersion.

| thohigheut markl. ie x, = 48,

e lowest wrklu.c..xo = 32.
: A&F ,»— 16
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4.3 THE SEMI-INTERQUARTILE RANGE OR THE QUARTILE
DEVIATION

The interquartile range is a measure of dispersion, defined by the

' difference between the third and first quartiles; and half of this range is

called the semi-interquartile range (S.1.Q.R.) or the quartile deviation
(Q.D). Symbolically, we have

FoR . 050  (w-272Y

where Q, and Qg are the first and the third quartiles of the data. The
quartile deviation has an attractive feature that the range "Median
+ Q.D." contains approximately 50% of the datagl'he quartile deviation is
superior to range as it is not affected by extremely large or small
observations!It is simple to understand and@asy to calculatel It has
certain disadvantages. It(‘{gi‘s'es no information about the position of -
observations lying outside_the two ('uzamlé's"j*is not amenable to_
mathematical treatment afltis greatly affected by sampling variabilit} ' ,

« The quartile deviation is not as widely used as other measures of 2
dispersion. It is, however, used in situations where extreme observations .
are thought to be unrepresentative: :

e

The quartile deviation is also an absolute measure of dispersion. Its__‘_.
relative measure called the Co-efficient of Quartile Deviation or of Semi-
Interquartile Range, is defined by the relation

Q3 Q1

Q3+ Q'

which is a pure number and is used for comparing the variation in two
or more sets of data. .z :

Example 4.2 Find the quartile deviation and the co-efficient of -
quartile deviation for (i) the data in Example 3.11 and (ii) the frequency
distribution in Example 3.13. : N i

(i) Using the data of Example 3.11, we _ﬁnd that
@, = 36 marks, @3 = 45 marks, and therefore . :

45 - 36

“430-efﬁcient of Quartile Deviation =

QD. = = 4.5 marks i
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74-56 18 ‘
CO'emd ), = = ; = (.
°nt‘°f QD 74 + 56 130 0.14 ?

4.4 THE MEAN (OR AVERAGE) DEVIATION e

The mean deviation (M.D.) of a set of data is defined as the" - = |

arithmetic mean of the deviations measured either from the mean or  §

from the median, all deviations being counted as positive) The reason to
count the deviations as positive, ie. to disregard the algebraic signs
(+and-) is to avoid the difficulty arising from the property that the sum
of deviations of the observation

s from their mean is zero, The symbolic
definition of the mean deviation from the mean is

M.D. = ;-EFJ» , for sample data, v
Y g, —
M.D. = ‘—"—EHL , for population data, \/

where |x; — x| and |x; — || (pronounced "mod. deviations”) indicate the
absolute deviations of the observations from the mean of a sample and

population respectively. It is more appropriate to call it the mean
absolute deviation (M.A.D.).

For the data organised into a grouped frequency distribution having
k classes with midpoints x;, x,, ... , x; and the corresponding frequencies

B A (X f; = n), the mean deviation of the sample is given by

Lflx-x
Mp, - Zhlz=3]

The mean deviation is also defined in tem of ab;:llut; .

the median in a similar way. Theory tells us f:-:.t "th: e

least when the deviations are measured .ﬁtl?maﬁc
‘it is generally ca!cnlated from“;be i

on gives more information than the 7




measure, known as thée co-efficient of mean deviation, is obtaine
dividing the mean deviation by the average used in the edcuhﬁoa ’"
deviations. Thus

Co-efficient of M.D. =

M. D M.D. \/
Mea Medlan

Example 4.3 Calculate the mean deviation from (i) the mean, (ii)
the median, of the following set of examination marks:
45, 32, 37, 46, 39, 36, 41, 48 and 36.
Also calculate the co-efficient of mean deviation.
We first arrange the given marks in an increasing sequence to find

the median. The ordered marks are
32, 36, 36, 37, 39, 41. 45, 46, 48,

Median = Marks obtained by k Fz—n] v l)th student in ordered

n ’ v
data as —— is not an integer. r

-

= Marks obtained by ([—g—] + l)lh, i.e. 5th student

= 39 marks

= 1 2x . 380

and x=—n—=-—9—=40marks
The necessary calculations are given below: \(
X x; =X |x; — Ef |x;-median |
32 -8 8 7
36 -4 4 3
‘36 = 4 3
-3 3 2
-1 1 0
1 1 2
5 5 6
6 8 7
8 B 9




44

4.3
= 20 or 39 = (0.11 or 0.11

Example 4.4 Calculate the mean devnatxon of the follawln(
- frequency distribution showing the weights of apples

Weight | 65-84 | 85-104 [105-124]125-144}145-164 165—184'185-ﬂ gy

(grams)

f 9 10 17 10 5 4.| 5. 0l

The calculation of the mean deviation (M.D.) from the mean is
illustrated below:

’
. Weight | =, f fx, 5-% |file =%
65 — 84 74.5 9 670.5 —48.0 432.0
85 — 104 94.5 10 945.0 -28.0 280.0
105 — 124 | 1145 17 1946.5 -8.0 1360
i 125 — 144 | 134.5 10 1345.0 +12.0 120.0
| 145 — 164 | 154.5 5 772.5 32.0 160.0
165184 | 1745 | - 4 698.0 52.0 208.0
185 — 204 | 194.5 5 972.5 72.0 ~ 360.0
Total -- 60 7350.0 - | 1696.0 j ;

- Zfix 173500 -
Here = ’i = 5o = 122.5 grams A

> ¥ f;lxl _ 1696.0 _ '
= 80 28.27 grams.

Hence M.D. =




. it is referred to as the sample variance ar
to distinguish between the two. The sym
e i

)Y ‘
c?= -Z-(ﬁﬁ—ﬁ-, for population data, V'

M |
5?2 = _Z_(_xj;_x_)_ , for sample data, v~

The variance is also denoted by Var(X). The term variance Wwas
introduced in 1918 by R.A. Fisher (1890-1962).

It should be noted that the variance is in square of units in which
the observations are expressed and the variance is a large number
compared to observations themselves. The variance because of its some

nice mathematical properties, assumes an extremely important role in
statistical theory.

Standard Deviation. The positive square root of the variance is called
standard deviation. Symbolically,

f‘?( - n)®
g= =—L\—J—E— for population data, v

S = 2. (x; = x)*

= , for §ample data,

The standard deviation is expressed in the same units as the
observations themselves and is a measure of the average spread around

the mean. Karl Pearson (1857-1936), “founder of the science of
Statistics”, is credited with the name standard deviation, the most useful
measure of dispersion. The sample variance in some texts is defined as

52 2y — x)?
g " n—1 .
where n is replaced by n — 1 on the basis of the argument that krnow. ec
of any n — 1 deviations automatically determines the remaining det

as the sum of n deviations must be zero. This is, in fact, an u
 estimator of the population variance G%, the explanation fo which

R

. -
X U -




- It should be noted that for a frequency distribution, as the num ' er

of observations or the total frequency n is usually large, dividing the 3_'_'
of squared deviations by n—1 is practically equivalent to dividingitbyn.

The standard deviation has a definite mathematical meaning, .
utilizes all the observed values and is amenable to mathematical
treatment but is affected by extreme values. The standard deviation is an

absolute measure of dispersion. Its relative measure called coefficient of
standard deviation, is defined as '

1)

Coefficient of S.D, = 2tandard Deviation

Mean .
=1

- 2 (x; — a)? . . . -
The quantity ——’~n— , where a is some arbitrary origin, is : |

called the root-mean-square-deviation which becomes the standard ;
deviation when this arbitrary origin coincides with the mean. >
g’ L

To calculate the variance and standard deviation on an electronic £

calculator, the alternative formulas for use are obtained by showing that
Z (xp— )% = Zx;2 - (Tx)?/N.

Now X(x;—W? = X(x;2 -2 + p?)
= Xx;? — 21 2x; + Nu? |

=%t Zﬁu’ +Np?2 (Cop= %")

o
L

- T2 Nt = Bx2 -

Thus the su.m of sqinres of the deviations from themgp .
the sum of the squares of all x;'s minus a conwion or which is‘t
(1/N)th of the square of the sum of all x;'s.

— : T (5 2 Tx? (T

N /

—L’,"._‘
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The alternative formulas for standard deviations are

RN e

5= (220 (2]

n

The following alternative formulas for the sample variance and standard
deviation of a frequency distribution are obtained in a similar way.

2
2
s’=z‘fx —( x) , and
n n

§ = ‘\/foz - fo ) N
Example 4.5 A population of N = 10 has the observat.lons 7, 8, 10, ‘

13, 14, 19, 20, 25, 26 and 28. Find its variance and standard deviation.
Calculations appear in the following table:

2 N
i S
PR

26

X; x;— W (x; — p)2 x;2

7 -10 100 - 49

8 -9 81 64

10 -7 49 100

13 - 16 169

14 -3 196
19 +2 4 361

20 3 9 400
25

676




Using the alternative method,

o3

N

! :
3424 (11700) - 342.4 - 289 = 53.4

Y
S

Example 4.8 Calculate the variance and standard deviation from
the following marks obtained by 9 students.

45, 32, 37, 46, 39, 36, 41, 48, 36
The variance S? and the standard deviation S for the sample are

calculated as below: as
x X;— X (x; — x)? x;? .
45 5 25 2025 4
32 -8 64 1024
37 -3 9 ; 1369 :

46 o0 36 2116
. ‘




and S= %ﬁ-(&)’-m-&(ﬁu;ﬁ

Example 4.7 Calculate the variance and standard dcvht!n
the data of Example 4.4

The necessary calculations may be carried out on an electronic

calculator as below: .

X fi fexq fn‘—"l’
74.5 9 670.5 49 952.25
84.5 10 8945.0 89 302.50
114.5 17 1946.5 222 874.26
134.5 10 1345.0 180 902.50
154.5 5 772.5 119 351.25
174.5 4 698.0 121 801.00
104.5 5 972.5 189 151.25

5 60 7350.0 973 335.00

.

Sl ()
Thus we find s? -Jz __‘._,x.

n \ n )
973335 7350\2
T ’( 60 )

= 1216 (grams)?

v :
2
and a-\/—fng--(%) -\/1216 = 34.87 grams
v’

" 4.5.1 Change of Origin and Scale. The computational labour can
be reduced by using the same transformation as was used for comput
the arithmetic mean. 3

Let . .‘_ﬁ%_ﬁ. Thux‘-c'rhni".i'czai\ hi

-

= 16222.25 - 15006.25




;nd S=h %- (_Zn_u)z

This gives us a short method for hand calculations.
- When the data are
corresponding short method for hand calculations, is

n n g
where k is the width of the class-interval, f; is the frequency of the ith

class and u; is the deviation of x; from an assumed mean in terms of class
intervals. This method is also known as the step-deviation method.

Example 4.8 Find the standard deviation by the short method
from the data of Example 4.4.

Let. u; = J—‘% where a = 114.5, value corresponding to the

highest frequency, and & = 20, the class-interval. Taen u; = -2,-1,0, 1,
2, 3, 4. Other calculations appear below:

x; fi uj fidy fing?
74.5 B -2 -18 36
94.5 10 -1 -10 10

114.5 17 -28 0
134.5 10 10
154.5

1745
1945

e

.grouped into a frequency distribution, the




/’ -20>q’304 2ox(17436)- grams.
4.5.2 Interpretation of the Standard Devlat!on., :
deviation (G or s) has not a simple interpretation like the

mean (U or X) that is interpreted as the balancing nolnt
distribution. The standard deviation is a very important conce that
serves as a basic measure of variability. A smaller value of the standard
deviation indicates that most of the observations in a data set are M}g
the mean while a large value implies that the observations are scattered
widely about the mean. However, a connection between the standard
deviation and fraction of data included in intervals constructed around
the mean, was discovered by the Russian mathematician P.L. Chebyshev

(1821-1894). This result, generally known as Chebyshcv s rule, is stated
' below:

} "For any set of data, the interval X—ks to X+ks, where k is any

numbef greater than 1, contains at least the fraction (l—-k-lg) of the |

data.” For example, the intervals ¥+2s and ¥+3s will contain respectively

P R P
at least the fractions (1 - 2—2-), ie. =% and (1 - 55) ie. 9 of the data. -

; This rule is applied to any distribution (Population or Samplé) and
i guarantees the inclusion of a minimum fraction of the data in the
: constructed interval whereas the actual fraction of the data included

(especially in bell-shaped distributions) will exceed (1 - —2-)

4.5.3 Co-efficient of Variation. The variability of two or mou
than two sets of data cannot be compared unless we have a relati e
measure of dispersion. For this purpose, Karl Pearson (1857-1
introduced a relative measure of variation, known as the co-eff
variation, abbreviated C.V. which expresses the standard dmi"
percentage of the arithmetic mean of a data set. Syr

dmdu
= c.V. .?:-’-x 100, torumphdm- .

X




. indicates that the variability is great and a small value

o iﬁﬁﬁcataslesswnuideEQy. Sy | _
-' | The coefficient of variation is also used to compare the p mance

of two candidates or of two players given their scores in various papers
or games, the smaller the coefficient of variation the more consistent is

the performance of the candidates or players. Thus it is used as a
criterion for the consistent performance of the candidates or the players.

It should be noted that this co-efficient is unreliable when the arithmetic
mean is very small. ' v

Example 4.9 Using the co-efficient of variation, determine
“whether or not there is greater variation among the prices of certain
similar commodities given, than among the life in hours under test.
Price in Rupees: 8, 13, 18, 23, 30
Life in hours: 130, 150, 180, 250, 345
We have to compute the mean and the standard deviation for each

set so that the corresponding coefficient of variation can be obtained. The
necessary arithmetic is shown below:

R R W W

Price in Rupees (X) Life in hours (Y) N

X X2 Y Y2

8 64 130 16900

13 169 150 22500

18 324 180 32400

23 529 250 62500 : :
30 900 345 119025 | | .
92 1986 1055 253325 e e

f Commoditi Life in Hours

= Rs. 18.4 Y= - 211 hot{tln'

92 o 1055
3




:."h" 1 under
ﬁamlllo 4.10 Goals seoml by two te

season were as follows: .-
[N, of souls Number of matches
scored in a match |- A ‘ B_ -
x;) 2 -
0 27 7.
1 g " Num 9 y
2 5 6 o D
3 5 5 3
4 4 3

By calculating the co-efficient of variation in each case, find wllleh "
team may be considered more consistent. (P.U, B.Com.)

The necessary arithmetic is shown below:

No. of goals Team A Team B
Cx;) fi CRECENEY
0, 27 0 0 17 0 0
1 9 9 9 9 9
2 8 16 32 12 24
'3 5 15 45 15 45
-4 4 16 64 ¢ 12 48
Total 53 56 | 15¢ [ 40 | .48 | 126
Team A:
Mean = Zf‘x-'css-IOG -and
53
' ,\F&{L ():fﬂ)’
{
- -a-"_"';’!‘_ ,-ﬁ; 5 ;5



L
i 1
A il _! ? » 3 l /;:. = 5
\‘t 2 s ) - f' =B
'Y - -—_. s, .:, \ 5~'\:‘.

Em
ERC

Thus C.V. = 2x100 = 23% 100 = 109.0%
4 1.20

We see.that the co-efficient of variation for the team B is smallor than
: that for t\h}team A. Hence team B is more consistent than team A.

4.5.4 Properties of Variance and Standard Deéviation. The .
variance and standard deviation have the following useful and
interesting properties:

(i) The variance of a constant is equal to zero. If a is any constant, .
then 1 i f

Var(a) = %Z [a —a)? (. mean of a constant is constant itself)

=0

(ii) The variance is independent of the origin, ie. it remains
unchanged when a constant is added to or subtracted from each ,_
observation of the variable X. Symbolically, .y 1) ~

Var(X + a) = Var (X)
1 2 .Z(x + a) \
Now Var(Xwa)=ﬁZ[(x,-+a)-(u+a)] (.—-’-—N = +a)

-;:,-Z(x'.—p)z = Var (X)

Hence Var(X) is invariant to change of the origin.

i by the square of the
iii)) The variance is multiplied or divided
( constant, when each observation of the variable X 3.

umlﬁpliod or divided by a constant.
Var(aX) = —Z'(as‘ 0&0’

Z g pod



variables is equal to the sum of their respective vari

If X and Y are two independent variables, then

VarX ) = £ 3 (6 £3) ~ G, , )1
3 CEIRETTS)
= %Z (—p)? + 31,-20;-5)2 i%Z(xru,)‘/(v}-u,)d_ "

The quantity -lﬁ 2 05— p) O - M) is called the covariance and is

| denoted by Cov (X, Y). We shall show at some later stage that the
! covariance of two independent variables is equal to zero. Thus we are left

with

]l 1
+ - —u)? + = = 1)2
Var X 1Y) =52 -H)*+ 5y Z - K

Var (X) + Var (Y).
j\ (v) If kB subgroups of data consisting of Ny, Ny, ..., N, (X N;=N)

observations have respective means [;, Mg, ..., Hs and variances
0,2, Oz% ... O4% then the variance o2 of the combined 1

observations is given by .

o? = %Z N;(c2+D?®, i=12..k

where D; = p; — H and |l is the mean for all the data.

Let for the ith subgroup with mean L, K, the general mean, be
_ considered as an arbitrary origin. Then the sum of squares of

deviations of the observations in the ith subgroup from W is given

N; N; -
T -2 =Tt W)
1

S

N; -
= T (x-p)?+ N;(—p)?, (. product term vanishes).
1 K ; A F

i

'..;v,, o2+ N; D?_ : g &8 "
= Ny ®7+ D5 .

N e e



ii reigvant to note that all these proﬁerties are ve

‘ddviation (S.D). which is the posiﬁve square root of v
words,

> @ S.D. (a) =
) SD.(X+a)=8D. X
i) S.D. (aX) = |a| S.D. (X), as S.D. cannot be negative.
(iv) S.D.(XtY)=+[Var(X) + Var ()

V) o= \/—I-ZN- (02 + D)

For sample data, the corresponding results may be obtamed in the
same way.

“‘

Example 4.11 Let ¥, and S,2 be the mean and variance
respectively of n; observations, ¥, and S,? be the mean and variance
respecitvely of n, observations. Then, if the variance of all n; + ng
observations is S?, prove that

n,S,% + n,S,? n.n ' >
2 381 2 P2 - =9
§? = S 4 o Gy - £)%P.U, B.A/B.Sc. 1986)

Let x denote the general mean and be regarded as an arbitrary
origin for the set of n, observations and the set of n, observations. Then
the variance of all n, +n, observations, by definition, is given by

n +ll2
S2 =——1"—' 'z (x"“X)z
nl +n2 fard .

L .__l_.: [ni(xi—f)z + "%"2(:‘_.)2],

5 Ak s? T ian,u -
= [ )j&; x;+x1-§)2+ )X(#:“fa“‘ 23
nl + "3 i=1 : ‘.'1*1 = (

u:a'jm' it



4 28 : o) O T :
1 gz, Rt

.0 ng+ng - Myt

~ Hence substituting and simplifying, we get -
o = n,S,2 + nySy? . M
\// "l + ng (nl + nzﬁ .
4.5.5 Standardized Variables. A variable is defined ﬂﬁi-f
Standardized or in standard units if it is expressed in terms of deviations
from its mean and divided by its standard deviation. It is denoted by Z.
In symbols, this means that ' L7

&, ;fz)? j

¥

x; — e
z; = ic = , for population data, ' ! e

- 7 g
Zia S "

for sample data.

This is a very important concept in advanced statistics as the mean
of a standardized variable is equal to zero and its variance is equal to

one. Thus

and

The Z-values, being independent of the units of measurem nt,
provide a basis for comparison between individual values, even thc
they belong to different distributions. That is why they are often 1
psychological and educational testing, where they are known as
scores. The negative numbers are avoided by multiplying the Z
10, an arbitrary S.D., and adding 50, an arbitrary me n, t

Vver 4 . g .':4_'. (
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HRIMMED AND WINSOF D MEASUR

B 4
i

observations which may be very different from the main body of the

set and may seem to be incorrect. Such extreme observations .

problems. In the presence of outliers, the mean and the sta
, _ deviation, being affected by the extreme observations, are refore

g  misleading measures of central tendency and variability, The appropriate

: measures then may be the Median and the Interquartile Range, which

are much less sensitive to extreme or wild observations. However, it is

important to examine a data set for outliers and if present, should be
excluded. Nk

For this purpose, we either remove a certain percentage of the
smallest and largest observations to get the so-called Trimmed data set
or replace trimmed values by those next in magnitude to obtain what is
known as Winsorized data set (proposed by C.P. Winsor). The mean and
the standard deviation of such data sets are known as the Trimmed Mean
and the Trimmed Standard Deviation, and the Winsorized Mean and the ;
Winsorized Standard Deviation respectively. ‘

Generally. the Trimmed mean is obtained from the data set after
having removed all observations below the first quartile and all . :
observations above the third quartile. The Winsorized mean is ealculated |
from the modified data set obtained by replacing each observation below '
the first quartile'with the value of the first quartile and each observation
above the third quartile with the value of the third quartile. The
Trimmed standard deviation and the Winsorized standard deviation are
computed from the trimmed data set and Winsorized data set as usual.
The trimmed and Winsorized measures have gained importance in recent
years as they are not disturbed by the presence of a few wild

observations and have been found almost as good as the corresponding
measures in symmetric distributions with no unusual observations.

Examplé' 4.12 Calculate the trimmed and Winsorized mmaa! 3-3
standard deviations for the data given in Example 3.11. T

The data ordered from smallest to largest and the two quartiles
were found to be . a8

32, 36, 36, 37, 39, 41, 45, 46,48

o

- e




_\[(Tf uwf(xoa)’

' = 1/1598.4 — 1568.16 = 1/30.24 = 5.5
0‘}(

To find the Winsorized mean and standard deviation, we replace the t wo
values 32, 36 below the first quartile with 36, and the two values 40. A
above Q, with 45 to get the Winsorized data set as 36, 36, 36, 37, 89. 41, '
45, 45 and 45. Thus

L.

the Winsorized mean = —nJ' = §-g-2 = 40, and

the Winsorized S.D. = \[ fif"_ (Zn‘f)? L \[14334__’_ (3:,,),

- 1/1614.89 — 1600 = 1/14.89 = 3.86

4.7 MOMENTS
A moment designates the power to which de\natxons are raised ., |

before averag‘mg them, e.g. the quantlty E(x; l.l) is called the ﬁut.

population moment and is denoted by M. Similarly, the quantlﬂ
1 z(;‘-p,)&iu called the second’ population.qmment and is denoted by" ‘

Ho. The correspondmg sample moments are denoted by ml and m’J 7
general,(the rth moment about the mean is the arithmetic mean of ;he-— :
power of the deviations of the observations from the mean. In Y be

this means thnt

......

e



m', = %Z-(x; —a)", for sample data.

Now, if we put r = 0, we see that

Uo'}l'o-l.and mO-m'o.l‘/' _
For r=1,wehave e

y .
1 ’ﬁz.(f.-“w'z—;‘-g-u-u-o.and

B
Hy 'NZ(x,-—q)-ZA—f‘-a-u—a.‘/

The corresponding sample results are m;=0andm," =x-a.

Putting r = 2 in the relation for mean moments, we see that

My = I-t,-'f_ (x; = W)? = o, which is the population variance, v/

and m, = nlz (x; = ¥)* = S?, which is the sample variance, ¥~ o

. 1 <
3 i When a=0, the moment m',=; 2 x;” is called the rth moment about zero.

, The moments about the mean or about the arbitrary origin are also
called the power moments.

When the sample data are grouped into a frequency distdhutlon
having k classes with midpoints x,, x,, .., x, and the corresponding
frequencies fy, fy, ..., fi (X f; = n), the rth sample moments are pvenh!‘

) -—Zf‘ -5, and

»

\/ m', = —ng(x;-a)'
° 471 llnmt: about the Mean in tpmu
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(=3 =@ -a+a-3
- D‘ = ml' where D‘ L (&, "G’— : !

 Thus, we have m, = %Zf‘(D‘ -my'y

By means of Binomial expansion, we have

...
m, = ,l{zfi [D,-’"(;) D{'m’y + (;) D;/~2(m’ )?+...+(=1)"(m" )]

|
where C)-—r'—— and ! =r(r-1)(r—2)..3x2x1
Jior-n!
1 ’ 1 5 <

ety |
o (1) (m' ) =2

- m'r _(’1-) m,r-l m'l + (;) '.n,r-2 (m'l)z + + ("‘1)‘-’ (M'x)r
2 Putting r = 1, 2, 3 and 4, we get |

ml = m’T-.—' m'l =, 0;

e i o BN .oy g

mz-mgv—(l)ml.ml*'(z)(m1)2.mf°
|

=m'y—(m')%

my=m'sg—3m'ym', +2(m')3, and
| my=m'y—4m'gm'y + 6m'y (m'))? ~ 3 ('ﬂ'a): L=
~_ The corresponding results for population data are:

T an’ “1-0; - &l 1] e
' _ - ) : W . ] =




m', = ',-1‘-2{} (x; —a)

';’",I;Zf‘(;l-i +x—a)

.

1 Y s ,
= -Zf; d;+m',)", where d; = x; - X and m'; = ¥-a

=
Co

--Zfd’ ()m,-Zf,d{‘l-o»(z (m' )2 x

; Xfd 2+ ... + (m'l)';Zf;

YTy - deed v o
ST raa R

r ’ ry ' <
=m, + (1) m,_y(m’y) + (2) m,_o(m 1)2+ e + (m'l)' v

Putting r = 2, 3 and 4, we get

‘oo e -
-

m'y = my + (m'))?
m's = mg + 3 my(m')) + (a' )3
m" = m4 + 4 m3 (m'l) + 6"12 (m'l)z + (m'l)‘.
For a population of size N, the corresponding relations are
Wo=Hy+p')2.
Wg = Hg + 3U'y Hagr 1y
v W= Mg+ 4 g + 6" 2y + ' 4,
4.7.2 Sheppard’s Corrections. In the calculation of moments
- from a grouped frequency distribution, certain errors are introduced by
the assumption that the frequencies associated with a class are located at
the midpoint of the class interval. These errors therefore need
* corrections. It has been shown by W.F. Sheppard that, if the y

distribution (i) is continuous and (ii) tails off to zero at ueh oad,v

eu'ucud moments are as given below: i 3
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4.7.3 Moment-Ratlos. There are certa in whic
numerators and the denominators are momenu. The most .

these moment-ratios are 3, and B, defined by the rahtf :

.’.' By = -E‘- . They are independent of origin and units of me:

1P
they are pure numbers. Actually, B, is the square of the thlrd pop

moment expressed in standard units and 3, is the fourth stanc
moment for a population, where a standardized variable has

defined as
= (x — W)/0.
-4‘0:' symmet.ncal distributions, [3, is equal to zero. It is, therefore, und

as a measure of skewness. [}, is used to explain the shape of the curve
and is a measure of peakedness. For the normal distribution to be

. discussed later, B, = 3.
The moment-ratios (or the standardized moments) for sample data
are similarly defined as

b
1% ma 7 27 (my)?
'K Example 4.13 Calculate the first four moments about the mean

' for the following set of examination marks: 45,32,37, 46,39,36, 41,48 &30. ‘

For convenience, the observed values are written in an increasing
sequence. The necessary calculations appear in the table below:




- 5)2 . .
my = ZEE B2 52 (marke?
—3)3
my = .2:-(’1” 12 l:ﬁ = 20.87 (marks)?
=gy ¢
my = = ("n 2. 10;08 = 1189.78 (marks)! °
Example 4.14 Compute the first four moments for the following
distribution of wages after applying Sheppard’s corrections. :
Weekly Earnings |5 6 7 8 9 10 11 12 13 14 15‘7 H
(Rupees) b
No. of men 1 2 5 10 20 51 22 11 & S i E |
e _(P.U., B.A./B.Sc. (Part I), 1962) ;
i

We first calculate moments about an arbitrary origin. The necessary
~ calculations are shown below. The moments about x = 10 are obtained
by dividing the column sums by n.

Earnings| Men D, f:D; ;D2 D3 f;D;4 :
inRs. )| [ (x;~10) .. ."
5 1 -5 -5 25 | -125 625 "
5 ~4 | s | 82| 95 | 5120l
7 5 -3 -15 4 | -135 405 .
8 10 -2 —20 40 -80 160 Y
9 20 -1 -20 20 | g9 20
L 10 51 0 —68 - 0 | —488 0
1 22 - 22
2 44 176 |}
- 8 - 405 |
4
5




g =m'y—(m'? = 2,64~
L L A T S i ) .
mg = mly=ammy v 2wt

= 0.56 — 3(2.64) (0.06) + 2(0.06)3 = 0.08;
m‘ = m" —_ 4m'3m'1 +.'6m'2(m'1)2 - 3()'!1'1)‘

= 28.38 — 4(0.56) (0.06) + 6(2.64) (0.06)% — 3(0.06)% = 28.3

. Applying Sheppard's corrections, we have | S p
7 2 e
| mg (corrected) = m, (uncorrected) — % = 2.64—0.08 = 2.56,

‘ mg (corrected) = mg (uncorrected) = 0.08, o

. " h? Th%
;_ m, (corrected) = m, (uncorrected) —?.mz(uncorrected) +220
: 240

‘. = 28.30 — 1.32 + 0.03 = 27.01

!

. 4.7.4 Change of Origin and Scale. Leta and h denote the

arbitrary origin and the class-interval. Then we define a new variable ¥

.' X G ' i

i b =g | $

‘\ so that x‘-—a=hu,-;f—a-:hﬁandhencexi—i=h(ui—ﬁ).

Substituting these Vvalues in the rth sample moments, we get
1 e |
; m'r",fzﬁ(xi‘“)"h'-;‘zﬁui';
: PR e LR ) A OTE
. . an r n 38 ; G Wl X |
i _ This shows that the rth moments of the variable X are h” times the

corresponding moments of the variable u, and are independent of th

origin ‘a’. In other words, the moments are not affected by a change

origin but are affected by @ change of scale. w

" 4.7.5 Charlier Check. We have seen that the con

 moments depends upon the sum of the products of
“the co nding values of the variable. It is, there




ST 905 Enta e W
Ef(“D’ Zruuazrauazm

Zfu+ 1)t = Zﬂl‘+42m3+szfa:+4§\ s= N

Example 4.15 Galculate the first four moments about w Mo
3 fmmth'dlhofExample 44 L the mean

e

Tho necessary calculations by taking u; = = -21014'5 , are ut‘oui;fnr. R

‘ the followmg table. The last column is used for Charlier’s check and the
column sums are divided by n to get m’,

Data Computations —_—7

i fi u fu | fu? fu? fut | flus1)t .
45| 9 | - 18| ° 36| _—79|° 144 9 1
945] 100 | ~-10 10 -10 0. o0 (
1145 | 17 0 0 ol o]l o] 17 |
1845| 10 | 1 0] 10| 10| 10| 160 |
1545| 5 | 2 10 20| 40| 80| 405 |
1745| 4 3 12 36| 108| 324| 1024
1945| 5 | 4 20 80| 320| 1280| 3125

Sum | 60 = 24| 192| 396| 1848| 4740

> Sums 1 .. 0,4 3.2 6.6 30.8 cn:'l:',.
iR ) =m'y | =m'y i =m'g| =m' | cheek
Charlier’s check.

Zf(u + 14 =Y ful +42ful+ GZﬂcz +4Xfu+n
= 1848 + 4(396) + 6(192) + 4(24) + aa -
= 1848 + 1584 + 1152 + 96 + 60 = 47 j'.:;?,i‘
themmintheluteolnmn. : -

the momcnts about the mean mﬂ il!.m rva: u




To get the moments about the mean in ordmmy unit:. we I
¢ . myby h? ie. 400, mq by (20)® and m, by (20)4. Thus m,; = mg‘_
* 23120 and m, = 3718400.

Example 4.18 The first three moments of a distribution about t the

value 2 of the variable are 1, 16 and —40. Show that the mean is 3, the
¢ variance 15 and my = —86. Also show that the first three moments l.bout |
E. - x = 0 are 3, 24 and 76. ,
t Here we are given m'y = -’lz—Zf(x -2)=1 .. (1)
; P ~f~" ; £ ' 5
: 'y = — e - = 16 wee
i | m'y = - 5f (z = 2)% = ~40 e
0; We also know that m', = X — a, so that
o~ N x=m'y+a=1+2=3 (L a=2) f
2 S and variance, S? =m, (second moment about mean)

=m'y—(m'y)2=16—1= 15, and
mg = m'y—3m'gm’y + 2m'D3
= —40 — 3 (16) (1) + 2(1)3 = —86.

. X

" To find the.moments about x = 0, we need the values ?

15 fa%and %Z fx3, which are obtained from relations (1), (2) and (
T e A

‘s
A



or :}z fx2=16—4 + 4(3) = 24
l' - (3)on fxpansion can be written as

%Zfﬂ-e%zm + 12%&:-8 = —40

or %fos = ~40 + 8- 12(3) + 6(24) = 76
Hence the moments about x = 0 are

- 3,

= 24 and

- .

B3 in

Example 4.17 Show thatfor discrete distributions, [3, > 1.

By definition, [, = w (P.U.,, D. St. 1962)
2

Now [3, will be greater than one if the numerator is greater than the
denominator, i.e. if i, > % orif g, — py? > 0.

Now u‘:p-}--‘-Zf(t—u)‘-O‘ € Hy=o?)

- —Z[(x i + ot - 204

._Z[u u)( g-mﬂ&;&




cribution in which the values equ
equencies is defined to be symmetr

) | motl'y is called s.kewncss.)‘lt' is important to note |

o < C

b

symmetrical distribution, the mean, median and mode
the two tails of the distribution are equal in length from ti
values are pulled apart when the distribution departs fre
and consequently one tail becomes longer than the other.@th’é |
is longer than the left tail, the distribution is said to have positi
skewness. \f the left tail of the distribution is longer than its r‘lghtlm
is said to be negatively skewed or to have negative skewness. 1
positively skewed distribution, the mean is greater than the median and
the median is greater than the mode, i.e. mean > median > mode and{‘m-f'l‘
a negatively skewed distribution, mode > median > mean. S R

Y Y oy - o

: Mean Mode Mode
0 Negative Skewness X 0O Positive Skewness - X

'M’I‘he difference be®ween the measures of location, being an indication

of the amount of skewness or asymmetry, is used- as a measure of A

" skewness. # measure of skewness is defined in such a way that ‘
(i) the measure should be zero when the distribution is symmetric and '
(i) the measure should be a pure number, ie. independent of origin and ’ ,

. units of measurements.) . -~

‘ R Accordingly, to measure the degree of skewness of a distributio
curve, Karl Pearson (1857-1936) introduced a coefficient of skewness
denot_ed by Sk and defined by | ol

Sk = Mean — Mode  ~/
Standard deviation

know that mode is sometimes ill-defined and is
le methods. It is, therefore, replaced by its

~
r

.

.

s 16 moiery



n

Proposed a measure of skewness that is based on the median and the
~ quartiles. In a symmetrical distribution, the two .quartiles are
- equidistant from the median but in an asymmetrical distribution, this
~ will not be the case. The Bowley's co-effic Eo <

3 : /

Arthur Lyon Bowley (1869-1957), a British statistician, has

ient of skewness is
S,-L;_!Q, + Q3 - 2Median 4y~ 5
' Q-Q :
Its value lies between 0 and #1. - ”

Another measure of skewness that is often used; is t!ie third

- moment expressed in standard units (or the moment ratio) and thus is
given by e ‘

-

Sk = “—g, for population data,
o}

m /
= s—:, for sample data, V/

L )

This coefficient fc;;: most distributions, will be between -2 and +2. Some

statisticiang denote it by a, or \/B, . If the coefficient j ter than
zero, the distribution or curve is positively skewed. If Sk < 0, there is
fegative shewness, For symmetrical distributions or curves, the

. coefficient is zero. /
" 4.9 KURTOSIS i . d
Karl Pearson (1857—-1936) introduced the term Kurtosis (lltonll;yu.‘
the amount of hump) for Qvl:'; degree of peakedness or flatness ofa
unimodal frequency cur\m.)n en the values of a variable are elouly
" bunched round the mode i such a way that the peak of the curve z

becom is leptokurtic. If, on the
_ es relatively high, we say that the curve  on the
~ other hand, the curve is flat-topped, we say that the curve "P‘“‘.’mfb}{

bl | ither very peaked nor -
~ Since the normal curve (tobedeacribedlater)isl.w RS
MWPM it is taken as a basis for comparison. The norm? rochd




equal to 3. When [, is greater than 3, the curve is more sharply pﬂkld 3
and has wider tails than the normal curve and is said to be leptokurtic.
When it is less than 3, the curve has a flatter top and relatively narrower

. : tails than the normal curve and is said to be platykurt:c Al
The corresponding measure of kurtosis for the sample dltl il ‘

be (- ml;{) It should be noted that the value of b, for a large sample

ffom the normal population is very nearly 3.

Another measure of kurtosis not widely used, is given by

__QL v

. Pgo - Plo .

where @.D. is the semi-interquartile range and P’s are the percentiles.
This is known as the Percentile co-efficient of kurtosis. It has been *
‘shown that K for a normal dlstnbutmn is 0.263 and that it lies between 0
and 0.50.

4.10 DESCRIBING A FREQUENCY DISTRIBUTION

To describe the major characteristics of a frequency distribuﬂon. we
need the calculations of the following five quantities: ‘i'
(i) The number of observations that describes the d.n d

data.

(i) Amdun&dundouqmehutlumw
that provides information about the centre or ¢
A measure of dispersion such as ma
/indicates the variability of the data. i

o~ Ka

"-:._ e

Aetmthtllwn



~moment is a measure of skewness while the fourth
used to measure kurtosis. Thus the first four moments
describing frequency distributions.

EXERCISES

4.1 Explain clearly the meaning of the term Dispersion. What ll'. ;
the most usual methods of measuring dispersion? Indicate the
advantages and disadvantages of these methods.

(P.U,, B.Com. 1960; B.A. (Hons.), 1960; B.A. (Part D), 1961) -

42. Discuss the different measures of dispersion. Describe the
method of computation of any two of them with suitable
examples. (P.U., M.A,, Econ. 1969)

4.3 Describe carefully how Mean Deviation, Standard Deviation and
Quartile Deviation of any given distribution are obtained. In
what problems, should each be used? (P.U., BAA. (Part I), 1962-S)

4.4 (a) What is Range and how is it calculated? What are its uses?

(b) Define Quartile Deviation. Find the quartile deviation from

the following data (i) graphically, (ii) using an appropriate
formula. :

Income per | 41-50 | 51-60 | 61-70 | 71-80 | 81-90 |91-100] Total
week (Rs.)

No. of 30 36 43 104 73 14 300
Earners

* (P.U., B.A./B.Sc. 1960)

| 4.5 The members of a sports club, 60 male adults, had their weights
' recorded, in pounds. The weights are given below:
171 160 144 132 154 160 160 158 148 160 131 153
131 165 139 163 149 149 140 149 150 161 136 14«
165 174 153 149 157 169 147 156 149 171 14¢
153 149 147 154 145 158 160 152 156 138
165 155 140 155 158 147 149 169 148 174

y




