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rd, the amdmy_ud, the “meem.-cr the explc
~ wherea ;!;e mg_cpendent or the non-random variable is

u the r_c_gressor. the predictor, the regression variable or tho 2
variable.

10.2 DETERMINISTIC AND PROBABILISTIC RELATIONS
OR MODELS

The relationship among variables may or may not be governed by an
exact physical law. For convenience, let us consider a set of n pairs of
observations (X ;, Y,). If the relation between the variables is exactly
linear, then the mathematical equation describing the linear relation i’
generally written as

Y; = a + bX],
.where a is the value of Y when X equals zero and is called the Y-
interce pt and b indicates the change in Y for a one-unit change in Xintf
18 called the slope of the line. Substituting a value for X in the equation,

we can  completely determine a unigue value of Y. The linear relation in

such a case is said to be a deferministic model. An important example of
the deterministic model is the relationship between Celsius and

Fahrenheit scales in the form of F = 32 + % C. Another example is the

area of a circle expressed by the relation, area =nr2 Such relanons
cannot be studied by regression

In contrast to the above, the linear relationship in some situations is
not exact. For example, we cannot precisely determine a person’s wel‘ht
from his height as the rel—txonshl.p between them is not expected to
follow an exact Tinear form. The weights for given values of age

reasonably assumed to include measurement of random errors, Tbc .

deterministic relation in such cases is then modified to allow for the
inexact relationship between the variables and we ‘get what is called a

uou-a"crmmwnc probabjlistic model as

where e;'s are the nnknown random errors.

’ ,xo.a SCATTER DIAGRAM ‘ |
' Mg‘__motmto lationshi

Y, =a+bX +¢, (i=1,2.,n

A . ol . i L



n lau'or ngmmu m‘wﬁch
‘value of the random variable Y
nom-andom variable X,

The scatter diagrams shown below reveal that tllc re
between two variables in (a) is positive and linear, in (b) is
linear, in, (¢) is curvilipear and i in (d) there is no relat.iohship

| .
- i

; 10.4 SIMPLE LINEAR REGRESSION MODEL
| We assume that the linear relationship between the dependent
variable ¥; and the value X; of the regressor X is 28

Y;=a+BX; +¢, "

where the X,'s are fixed or predetermined values, A
tho Y‘ s are observations randomll dmwn (rom a population,
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WG Vare) = Ee) = o for all , ie: the variance of error ta
i constant. It means that the distribution of error has the
variance for all values of X. (Homoscedasticity assumption);

(iii)  E(g;, ;) = 0 for gll i#j, i.e. error terms are independent of each
other (assumption of no serial or auto correlation between £'s);

(iv) 'E(.X.,_Soi)' = 0, i.e. X and € are also independent of each other;

(v) g;'s are normally distributed with a mean of zéro and a constant
variance 2. This implies that ¥ values are also normally

distributed. The distributions of ¥ and € are identical except that
they have different means. This assumption is required for
estimation and testing of hypothesis on linear regression,

- According to this population regression model, each Y; is an
observation from a normal distribution with mean=0+BX and _
variance=02, Thus the relation may be expressed alternatively as

E(Y) = a + BX,

which implies that the expected value of Y is linearly related to X and
the observed value of Y deviates from the line E(Y)=a + X by a random

component g, i.e. €; = Y; — (a+[X)). The following graph illustrates the
assumed line, giving E(Y) for the given values of X.

4

E(Y)==<+pX
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" but we choose that particular line which best fit

regression line is obtained by estimating the regression

‘the most commonly used method of least squares whleh we
the following subsection. . e

10.4.1 An Aside—The Principle of Least Squares. The
principle of least squares (LS) consists of determining the values for the
- unknown parameters that will minimize the sum of squares of errors (or
residuals) where errors are defined as the differences between observed

values and the corresponding values predicted or estimated by the fitted
Model equation. ' s

The parameter values thus determined, will give the least sum of
. the squares of errors and are known as least squares estimates. The
method of least squares that gets its name from the minimization of a
sum of squared deviations, is attributed to Karl F. Gauss (1777-1855).
Some people believe that the method was discovered at the same time by
Adrien M. Legendre (1752-1833), Pierre S.Laplace (1749-1827) and
others. Markov’s name is also mentioned in connection with its further
development. In recent years,. efforts have been made to find better
methods of fitting but the least squares method remains dominant and is
used as one of the important methods of estimating the population P
parameters. p

10.4.2 Least-Squares Estimates in Simple Linear
Regression. Let there be a set of observations {(X;, Y)), i=1, 2, ..., n},
where Y; are the values of Y randomly drawn from a population and X;
are fixed values. Then the observed Y; may be expressed in a linear form -
of the population parameters as ' : o SENN

Y,-=(l+ﬁxi+€‘,

or in terms of sample data as

Y"a;.'bx“l'e‘,

where a and b are the least-squares e‘gtimates of a and P, e; comn ronly
called residugl, is the deviation of the observed Y; from its estim :
provided by Y; = a+bX;. 3> : sy
~ According to the principle of least-squares, we det
alues of a and b which will minimize the sum of




. =X(¥-a-bX)?
‘As a and b, the two quantities

that determine the line, vary,

S(a, b) will vary too. We
 therefore consider S(a, b) as a ¥
. function of @ and b, and we wish
g to determine at what values of a 0
1 and b, it will be minimum.

Minimizing S(a, b), we need to set its partial derivatives w.r.t
a and b equal to zero. Therefore

0 S(a, b)
da

0 S(a, b)
ob
Simplifying, we obtain the following two equations, called the

normal equations (the word normal is used here in the sense of regular
or standard).

=23 (Y, ~a-bX)(-1) = 0, and '

- 22(Y;—a—-bX) (-X) =0

Y, = na + bXX; and YX,Y; = a2 X, + b2IX2.

These two normal equations are solved simultaneously for the
values of @ and b either by direct elimination or by using determinants.

(i) Direct Elimination: Multiplying the first equation by 2X; and
the second equation by n, we get

ZXYY = naXX + b(ZX)? and nIXY = nalX + nbw

Subtracting, we get |
) nIXY - IXLY = bnZX? - (ZX)7) A0
nXXY -ZXTY XX - -Hy-9 ”
Thestors. b= oa_oxt T TR-IP LS
wthdmdmwm
- S |

. 4§ pj;xw» 4
Q- = ""::"r{:*)'w,—_

r’ﬁ;:..' B u



o Thhuhoahm tbatthoutnmmd rogruslonngm basses th
‘X.Y).thomuuofthedau. ‘

(ii) By means of detemlnanto, the solution is

XY 22X
LY M XXy = (XX Y) . ad
X2 X nIX?-(xxn? '

2X n

23
2X

XY | oxHEn-GE0 ():xr)
X n}?X’—(ZXP :

2.X n

These estimates give us the regression equation
if\',- = a + bX; -, Sp

=Y+ bX-X). '
where b = n2XY - QX (2Y) ;
nXX? -(XX)?

Since Y is a random variable, therefore the devfatlons in th. ¥
" direction are taken into account in determining the best-fitting line. ",\ .

" It is very important to note that, when both Xand Y are obunnd d» J
random, i.e. the sample values are from a bivariate populamm, tm,- are
two regression equations, each obtamcd by choosing that vari ' e a
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PLE

- anﬂthctmmomal equations are
of IY = na + bEX : e
2XY =aXYX + b X2

To compute the necessary summations, we arrange thc
computations in the table below:

“g .,

! X Y x | x?
: 5 16 80 25
: 6 19 114 36
| 8 23 184 64 y
; 10 28 280 | 100
& 12 36 432 | 144
13 41 533 | 169
15 44 660 | 225
i 16 45 720 | 256 d
és 17 50 850 289
? : Total 102 | 302 | 3853 | 1308
: X 102 w_ ZY, 802 ~ L

Now x-,T-T 11.33, Y-—R—-T-33.56.

b

nZXY - QX QY) _ 9(3853) - (102) (302) -\ = =
- ZX2 -~ (X! 9(1308) - (102)2 4

34677 30804 _ 3873 _ ) 0q g
" 11772 - 10404 1368 o

a = Y -bX = 33.56 - (2.831) (11.33) = 1.47.

&QMMWHMMYMXB
o Y-u?* L




| X=Loads (Ib) '

Y=length (in) .

‘10 | 12

15

(i)
(ii)

The data come from a bivariate population, i.e. both X and Y are
random, therefore there are two regression lines. To find the M |
equation for predicting length (Y), we take Y as dependent variable and o
treat X as independent variable (i.e. non-random). For the seeoud '

the length, given the weight on the spring;
the weight, given the length of the spring.

regression, the choice of the variables is reversed.

The computations needed for the regression lines are glven in the

following table:

(W.P.CS, 1

Y

X2

Y2

XY

10
12
15
18
20
22
217
30

9
25
36
81
100
144
225
400

100
144
225
324
400
484
729
900

30
60
90 |
162 14

264 ' A ;;'
405 £
600

22 32 484 1024 704
28 34 784 1156 932 |
Total 130 200 | 2288 | 5486 | 3467 j

(i) The estimated regression equit.ion appropriate for p ! ‘_ ‘*

length, Y, given the iuightx is .
aadl® Y-a°+b X,

nZXY - Q! ( .4
- u&!’- :;

Mbu




Y-&'u-v- IOBX

(ﬂ) 'l'he estimated regression equation appropnata for predicting t
" weight, X, given the length is '

X = al + b Y
ot & _nXXY — (TX) (ZY) _ (10) (3467) — (130) (220)
7T TSI (IN? . (10) (5486) — (220)2

6070

-m 0.94, and

@y =X-b_Y = 13- (0.94) (22) = -7.68.

Hence X-O 94 Y-7.68 is the estimated regression equation appropriate
for predicting the weight (X), given the length (Y).

10.4.3 Properties of the Least-Squares Regression Line. The
least-squares linear regression line has the following properties:

(i) The least squares regression line always goes through the point | §
: (X,Y), the means of the data. : - J
(ii) The sum of the deviations of the observed values of Y; from the ] 423
least squares regression line is always equal to zero,i.e.S(Y;-Y)=0 -
(iii) The sum of the squares of the deviations of the observed values ° * .
i1 ; from the least-squares regression line is a minimum, ie.
n 2(Y; -Y‘) =minimum: : e

(xﬂ_ “The least-squares regression line obtained from a random sample
—is the line of best fit because a and b are the unblased estunatea
/’ of the parameters o and J3. : %
“10.4.4 Standard Deviation of Regression or Standard Emr
of Estimate. The observed values of (X; Y) do not all fall on the
regression line but they scatter away from it. tl:he degree of scatter (or
dispersion) of the observed values about the rgﬂewon line is measured
Wed the standard deviation of regression or the standard -

% of estimate of Y on x5> For the population data, the standard
k ". tion that measures thmcariation of observations about the true

won line am-mnx‘;@s denoted by Gy xand is defined by




and 99 7% observatxons tespectxvely

To find Z'.(Y-Y)2 we have to calculate Y- from tbe f‘ *' '
regression line for the observed values of X, which is not an easy t
We therefore use an alternative form obtained as below:

TY-9? = 5(Y,-a-bX)? = Y{U Q*b") L\( —
- TY.(Y-a-bX,) - aX(¥ -a-bXp-bEX; (¥; (-a-bXy) ¥
=YY2-alY,-b2X)Y;—alXY;—na— -bXX;]
. | » - bEXY,; - aZX; - bZX;?]
But ZY,' —na - b2X; = 0and 2X,Y; - a2 X; - bz‘)f,' = 0 as they

are the normal equations. Therefore )
(Y, - V)? = TY;2 - a¥Y; - bIX.Y;

O ,
Y2 -al¥; - bIXY; y :

Hence s, = ' 4 % .

4 n-2 ~ _ a¥x > B

where n is the number of pairs. & S 5 U ~ LA B
Example 10. 3 Using the datain Example 10.1, - = ) 3

(i) find the values of Y and show that £(Y — ¥) = 0, and ‘
(ii) compute the standard error of estimate s, .. 3

The calculations needed to find the values of ¥ and the standard
“error of estimate s, are given in the table below:

~

x| Y ¥ y-v | o-h? o
: (=1.47+2.831%) ~
5 16 15.625 0.375 0.140625 256
8 .19 1 18.456  0.544 0.295936 - “‘
8 | 23 24.118 -1.118 1.249924
10 28 29.780 -1.780 3.168400
- 36 | 35.442 0.558 | 0.311364
41 38273 2.727 7.436528
| 44 | 48935 0.065 0.




Using the alternative form for the calculation of 5y wa;‘, *

\/zrz aZY bIXY T

2 \/uasa - (1.47) (302) — (2.831) (3853)
9-2

Ak L L 217 =/2.316714 =152. ©
= 4

10.4.5 Co-efficient of Determination. The variability among
the values‘of the dependent variable Y, called the fotal variation, is given

by 2(Y-1)2. This is composed of two parts (i) that which is explained by
(associated with) the regression line, ie. Z(Y—Y)2 (ii) that which the
regression line fails to explain, i.e, 2.(Y- 2 (see figure). In symbols

; T(Y-N? = LY-N2+ T(¥-D2,

' .
) Unexplained variation + Explained variation

Total variation

Y Y;




An alternative form for calculating the coefficient of determination is

2 ALY + bIXY - (EN?%/n :

YV — (N Si | 2

When all the observed values fall on the regression line, then Y=Y
and 2(Y — -Y)2A= 2(Y - _}-’)z,Aand hence r2=1. When the observed values
are such that Y=Y, then Y(Y — ¥)2=0, and hence r?=0. This shows that
0<r2<1. A value of r?=1, signifies that 100% of the variability in the
dependent variable is associated with the regression equation. When
r2=0, it means that none of the variability in the dependent variable is
explained by X-variable. A value of r2=0.93, indicates that 93% of the
variability in Y is explained by its linear relationship with the
independent variable X and 7% of the variation is due to chance or other

factors.

Example 10.4 Taking length (Y) as dependent variable for the
data in Example 10.2, calculate (i) the total variation, (ii) the
unexplained variation, (iii) the explained , variation, and (iv) the co-
efficient of determination and interpret the coefficient.

In Example 10.2, we found that :
TY = 220, TY? = 5486, LXY = 3467, b=1.02, a=8.74 and n=10.

We now find .
: (i) Total variation = TY-"2=XY2-EN?%n
= 5486 — (220)2/10 = 646 '
(ii) Unexplained variation = 2.(Y - Y?2=3y2-aXY- bIXY
= 5486 — (8.74) (220) - (1.02) (3467)
- 5ea - caNe A

L



denoted by p, has already been defined as -

YT

A value of r?=0.958 indicates that 95.8% of the variability in Y, the
length of the spring, is demonstrated by its linear relationship with X,

‘the weight on the spring.

10.5 CORRELATION
Correlation, like covariance, is a measure of the degree to which any

two variables vary together. In other words, two variables are said to be

correlated if they tend to simultaneously vary in some direction. If both

the variables tend to increase (or decrease) together, the correlation is

said to be direct or positive, e.g. the length of an iron bar will increase as
the temperature increases. )If one variable tends to increase as the other

variable decreases, the correlation is said to be negative or inverse, e.g.
tmdfaéze“a}_tm pressure increases. It is worth
remarking that in correlation, we assess the strength of the relationship
(or interdependence) between two variables; both the variables are
random variables, and they are treated symmetrically, i.e. there is no
distinction between dependent and independent variable. In regression,
by contrast, we are interested in determining the dependence of one
variable that is random, upon the other variable that is non-random or

fixed, and in predicting the average value of the dependent variable by
using the known values of the other variable.

10.5.1 Pearson Product Moment Correlation Co-efficient, A
numerical measure of strength in the linear relationship between any
two variables is called the Pearson’s product moment correlation co-
efficient or sometimes, the coefficient of simple- correlation or total
correlation. The sample linear. correlation coefficient for.n pairs of
observations (X, Y;) usually denoted by the letter r, is defined by

e SX=XNY - :
VEX-225(Y - 02 ;

The population correlation co-efficient for a bivariate distribu

i K & b p'\“‘ = m __7,‘..::‘;
. 1 R . :‘,‘ »;.

[ -

B il




(X2 - (2‘)0’1 [nz:w- n -‘
This is a more convenient and useful form, espocidly hen
are not integers. The coefficient of correlation r is a pure r
independent of the units in which the variables are measu.
assumes values that can range from +1 for perfect posnﬁva i

relationship, to -1, for perfect negative linear relationship with the
intermediate value of zero indicating no linear relationship betweﬁ
X and Y. The sign of r indicates the direction of the relationship or

correlation.

It is important to note that r=0 does not mean that there is no
relationship at all. Tor example, if all the observed values lie exactly on a
circle, there is a perfect non-linear relationship between the variables -
but r will have a value of zero as r only measures the linear correlation.

/'The linear correlation co-effici i e root of the

linear co-efficient of determination, 2.}
We have Y=Y+bX-X |
or Y-Y=bX-X |
Squaring both sides, we get
¥ - 92 = bUX - X)?
Substituting in the ratio, we find
S¥-9? _ X -X?
| L Tw-» Za-D? |
. | _TX-X? [ZX- ~% (¥ = n]
w-n? - I&X- 102 .
JEe Z(x—_i) (Y—Y)_ ] it
*® : ; TY-PIX-0?% P

Example 10.5 Calculate the product moment
at Abmun){ancﬂ'(romthefonowinxm >

iy ‘—"":"




X - X)(Y Y 13 13

VEX-225(v-1? +lox2s 161
Alternatively, the following table is set up for calculation of r.

r =

=08 .

X Y Xx? Y2 XY

1 2 1 4 2

2 5 4 25 10 _ .

3 3 9 9 g -
4 8 16 64 32 Tl

5 7 25 49 35
15 25 55 151 88 - ' : v

E ZXY - (ZX) (ZV)/n | ;
VIZX2 - (Z0?/n] (Y2 - (EY)2/n) s

__ 88-(15(@25/5

\/[55 — (15)2/5] [151 — (25)2/5] §7mxze

10.5.2 Correlation and Causation. The fact that correlation
xists between two variables does not imply any cauu-and-effect-.
Momhlp Two unrelated variables such as the sale of banam' and

=3

ﬂuﬂl” from cancer in a city, may produce a luzh nositive
'uu' o boductoath:rdunknmvaﬁabhr( |

0.8




10.5. Propertlu ol’ r. The sampl o
mme
(i) The correlation co-efficient r is symmetrial wtth

variables X and Y, i.e. ry,=r,.

(ii) ‘The correlation co-efficient lies between —1 and +1, i.e = <r<+1

(iii) The correlatlon co-efficient is mdependent of the origin and st

Proof: Let u and v be the two new variables defmed by u-L lml

U-L;-b- sothat X = a + huand Y = b + kv, wherea and b are the new

origins and k and k are the units of measurement.
Let r,, denote the correlation co- _efficient between X and Y and "m»
the correlation co-efficient between u and v. : b

Substituting these values in r,,, viz. : - 18
e Z(X——X) (Y—Y)_ :
X -2 T -N?
s Yl + hu) — (a + kD)) [(b + kv) — (b + kD)
VTl + hu) ~ (@ + kD)2 Z(® + kv) = (b + kD)]?
where X = a + huz and Y = b + kv. Therefore
- heE(u—) W=D) _ _
. : hNZ(u -0)?.Zw~-0)?
b This property is very useful in numerical evaluation of r, since M
to this property, we can choose any convenient origin and scale. +

(iv)  In case of a bivariate population where both X and Y m do
variables. risthe geometnc mean between the two regress co-

, we get

= Ty




o ;." . "." x* 0 "b”“ldbg‘ﬁ _ = ;
L r--\l .b ifb,,andb mnmﬁn.

T at is the value of r alwaya takes the same slgn as the regr
coefficients.

- The regression co-efficients and the regression lmes for a bivariate
population, by using the definition of the correlatlon co-efficient, may be, :

~ expressed as |
S S
= —l' = —x
byx Pe: Y% "S’

R 9 e = S =
- Y-Y= rsrX-X) and X-X = r2(y- 9,
x S,
where the letters have their usual meaning,

‘Example 10,6 Calculate the co-efficient of correlation between the i
values of X and Y given below:

X | 78 8 97 69 59 79 68 61
Y | 125 137 156 112 107 136 123 108

IS w—ive
.

Letu =X — 69 and v = Y — 112, Then r, w.'The calculations

needed to find r are give in the following table: | e
X Y < it v u? v? uv ;
78 125 9 13 81 169 | 117 l
89 - 137 20 | 25 400 625 500 ‘
97 | 156 | 28 | 44 | 784 | 1936 | 1232 :
69 | n2.] o 0 0 0 0 e

59 107 | -10 | -5 | 100 | 25 | 50" |
136




[1‘530 i (48) ] [3468 o) m;e)’] '

B . | 2160 — 648 1512
: 3 A \ TR = 0.96.
? : (1530 — 288) x (3468 — 1458)
2 U " Hence the correlation co-efficient between X and Y is 0.96.

Example 10.7 If by, is the regression coefficient of X; on.
.calculate the product moment coefficient of cortelatlon in @
given
| » (i) b12 = "01 b21 = "04 (ll) bl3 = 027, bal = 0.6
(iii) bys = 0.67, by = 0.38. |
| The product moment coefficient of correlation between X; and Xj is TN
. given by [

- rl'j = le x b}‘ A .z' "-:“
kS (i) - Here b;p=—0.1, and by, = —0.4 '
, = —\C0.) (-0.40) = —0:20. + LI

‘ =ris neganve smce both regression coefficients are negative

(ii) Here both regression coefﬁcxent.s are positive, so r is positive.
Thus

1 ‘ rg =+ \’bmxbs, = +/(0.27) (0.6) = +0.40.
: (m) Hetewe have : ' ]
| -\[(oeﬂ(oss) =050 (. b,,anab,,m ‘

-

' 10.5.4 Correlation Cn-e(ﬂclent for Grouped Data.
ub!e, the data are arranged with mpect too



- where f;. = ng.thefreqnencyonvalues.fj ng.theﬁtquenvd\

'y »

X valuu and n is the total frequency.

Example 10.8 Calculate the co-efficient of linear correlation from
the table given below:

Grades in Grades in Mathematics (X) j
Statistics | 40-49 | 50-59 | 60-69 | 70-79 80-89 | 90-99 | Total
Y)

90-09 - -- - 2 4 4 10
80-89 | - ~ 1 4 6
70-79| -~ = s .
60-69| 1 4 a 5 | 2
50-59 | 3 6 é o

40—493H5‘

K

s

(P.U,, B.A./B.Sc. 1968)
Let us introduce two new variables u and v given by ons
!—'%"'—M v= !:zi‘—"# Then the calculations needed for findir

Tange ummun(«n -V

— - &

L




3 | 5
2 |15 25| 23| 20 | 10

~-14 | -15 23 | 40 | 30 | 64
28 | 15 23 | 80 | 90 | 236
32 | 31 -1 | 24 | 39 | 125 | «—Chieck

The number in the corner of each cell represents the product fj;
where fj; is the cell frequency. Thus f, , uw; = 2(I) (2)-4 and
fi, 5u5v1=4(2) (2) = 16 and so on. The totals in the last column and the

last row are equal and represent 2f;uv;

N n2fuv — (2fu) (2fv)
ow rXY = ruu =
‘\I [nEfuz - (X)) (nZf? - (Tw)?)
(subscripts dropped for convenience in pﬁnﬁn&)}
(100) (125) - (64) (=55) ~
Qmoo; (236) - (w*] [(100) (253) - (-582) ’

er I
o4

=4

-
o
14 =
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Let u =aX, sothati = aX,
- and u-bYsothauiJ.'.b?

Then (u=@) = alk~X) and v ~5) = b(¥ - D :
e By definition, we have . . ¥

2(u—u) (v—-"1)
VE -2 X - )2

. a2 X-X) (Y-
Va2X(X - D)2 p23(Y - V)2
ab .

Na%o? XY

= +r,ifa and b are of the same signs.

ruv

—r, if a and b are of the different signs.
= " (b) - Wearegiven aX + bY + ¢ = 0

Thus a2 X+b2.Y+nc=0, where n is the number of pairs ofvalues :
X;, Y)).
Dividing by n, we get

a.x+bY+c-0XandYbemgthemeansofXandYsetsof 3
observations. Subtracting, we have

aX - +b(¥Y-9 =0
.or (Y—Y)-—-;-:-(X-X)
TX-DY-9
-F I -X?



8nchmordemdamngementhuﬂd
civon to an individual or object is called its rar
between two mchsetsofmnkingshknownasRank Correlati

Jl 10.6.1 Derivation of Rank Correlation. Let a set df n
with respect to character A a8 X7, X3, s Xy oy ¥ and accc

character B as yy, yg, ..., ¥jy -.» ¥, We assume that no two or mom obj
__are given the same ranks (i.e. are tied). Then obviously x; and yg :
some two numbers from 1 to n.

Since both x; and y; are the first n natural numbers, therefore, we
have

i

n n n n+_1) .
Zx-Zy=Zi=1+2+3+...+n-i2——-./
i=1 i=1 i=1 .

o |
n+l)(2n+l)/. '
»

. 6 ‘

n n n
212 - Zy2 = Z (1)2 = 12+22+32+...+n2- ¢
i i=] i=]

(Zy )2

f:(x,--f)2=£: Z)'z

nn+1)@2n+1) n+1? n@mi=1)
6 : 4 ’ 12 -

Let d; denote the difference in ranks assigned to the ith individual A
or object, i.e. d; = x; — y;. 3

n n
Then ‘Zld‘z - Z (x; ‘,Yg)z

L 38

_ =2+ y%- 2‘:31) =2x2 + ZY: ‘22’&-? )' 3
Subomuung for 2‘;:.2 and Yy,%, we get '

42 M+ D@+ nk+D)@nel)




MO+ DY) 1o 1 s D?

n(n?-1)
12

nn+1)2n+1 n+1)2
[ . n( +D]__zd‘

This formula is usually denoted by r, in order to have a distinction.
It is often called Spearman’s co-efficient of rank correlation, in honour of

the psychometrician Charles Edward Spearman (1863-1945), who first
developed the procedure in 1904. |

It is to be noted that 2.d;? has the least value and is zero when the

numbeu are in complete agreement. When they are in complete.
2.

disagreem=nt, >.d;? attains the maximum value and is equalto-—-n(n 3 L .

- o 4N

S )stituting these values in the formula, we see that
ry = 1for 2d;? = 0, and |

.. 2_1)
R = r,--lforfd‘z"n—(n——")'-

Thur,aholiubctwun -land +1.

ml- 10.10 Find the co-efficient of rank co
lowing ran! axomminsumug
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Hence, using Spearman’s co-efficient of rank correlation, we get

2
pm1-—S2A_, 8X3 _y_g2- 408
n(n?-1) 10 x 99

This indicates a high correlation - between Statistics and

Mathematics.

10.6.2 Rank Correlation for Tied Ranks. The Spearman = eo- _
efficient of rank correlation applies only when no ties are present. In case ¢
there are ties in ranks, the ranks are adjusted by assigning the mean of 3
the ranks which the tied objects or observations would have if they were
ordered. For example, if two objects or observations are tied for fourth
and fifth, they are both given the mean rank of 4 and 5, i.e. 4.5. Thom

]

~ of adjusted ranks remains ———— sk + 1) ———but Z(x‘ -2 (2= "("1; 1),, it .'f

has been shown that each set of ties involving ¢ observations re: e
value of d? by a quantity equal to 35 1% ~ 1) In such a situation, 0
the following two methods is to be u:ed. : —

- ) v : Jan Y
B Y . S soud oo L . : ; 8- cnrmtd ;
.'~ - ‘ I 3 - '.- -r - ‘ | }'z X
ey, S AR Sy et T { SIS e Ul




1 25 25 4 5 6 17
Member 2 | 2 4 1 3 6 "6

Calculate the co-efficient of rank correlation.

: . We observe that both the sets of rankings contain ties. The co-e g
efficient of rank correlation is therefore calculated as below:
‘ Person Member1 | Member 2 d d? |
A 1 2 B | 1
l B 2.5 4 ~15 2.25
C 2.5 ] 1.5 2.25
D E 3 1 1
E 5 6 by 1
F 6 6 0 0
G 7 6 1 1
% H 8 | 8 0 0
¥ 36 36 0 8.5

. N
FOI‘ tie between B and C. (ﬂl’st rankingS) t=2 and ror E’ F and.a L
(second rankings) #=3, therefore the quantity to be added to Yd%is e

Ls_o) s L@d-g=25 #= ir Sl
3@ -2+ 5@ -3=25 s

6(8.5 +25] . 66_‘. 191 e
1 Henc_‘ Ty = 1 -—-8(—:)—- 1 _504 1 0.131«!‘0_ il -
~ Alternative Method: - s
~ We see that the first member has tied B and C, while the s

F : e




36 36 203.5 202 198.5

Hence the co-efficient of rank correlation is
Txy - (Xx) Qy)/n .
© I - epYn] [ - Ey?n]
B 198.5 — (36) (36)/8
\/203.5 — (36)2/8] [202 ~ (36)2/8)

198.5 — 162 36.5 :
" /(2035 - 162) (202 - 162) " \41.5) 40) |
36.5 |
T O | X

Which indicates a high degree of agreement between the two members.

10-6-3 Co-efficient of Concordanee. The Spearman’s co-efficient
of rank correlation measures the agreement between two sets of
rankings only, but in practice; the individuals or objects are sometimes
ranked by more than two people. We then need a co-ctiicient to measure
agreement among more than two sets of rankings. Such a co-efficient ig,
obtained as below:

Let there be m rankings of n individuals or objects lnsmﬂ of two.
ly in case ef eomplete agreement. ‘the rank wtnls
| -fzm,




_mAn+1)@n+ 1) mln + 1)? m’(n" D
8 4 127

But the totals of observed ranks will not necessarily be the umi.
Let S denote the sum of the squares of deviations of the totals of the

m(L;-l-)- then the Co-

efficient of Concordance, W, is defined as the ratio of the variance of the
totals of the observed ranks to the variance in case of complete
agreement. Thus, we have

observed ranks from their common mean, i.e.

w=§_$m2(n2- 1) __ 128
n 12 m2(n3 -n)

This co-efficient is due to Maurice G. Kendall (1907-1983) -and
varies from 0 to 1. When W=0, it represents no agreement and when
W=1, it represents complete agreement.

PR SSE = S

Example 10.12 The following data give rankings of six persons for
their ability by three judges, P, @ and R. Calculate the co- efﬁcnent of

o bt asiatit

concordance.
Persons A B C D E F
Judge P 3 1 6 2 5 4
Judge @ 4 3 2 5 1 6
Judge R 2 1 6 5 4 3

(P.U., B.A. (Hons), Part Il 1963)

Here the totals of the observed ranks are 9, 5, 14, 12, 10 and 13, m-a

+1) _36+1) !
and n=6 so that their mean = m(nz > = 10.5. E

=<

 Thus S = (9-10.5)%+(5-10.5)2+(14-10.5)7+(12-10.5)2 + (10-1
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relationship, giving examples.

10.2 (a) What is a scatter diagram? Describe its role i
regression.

(b) What is a linear regression model? Explain the £ n= Y
underlying the linear regression model.

10.3 (a) Explain the principle of least-squares.

(b) Explain briefly how the principle of leut squam is used to
find a regression line based on a sample of size n. Illustrate
on a rough sketch the distances whose squares are
minimized, taking care to distinguish the dependent nnd
independent variables.

<8
.
- q ‘4

10.4 (a) Find least-squares estimates of parameters in a simple linear

regression model Y;=a+PX;+e;, where ¢;'s are distributed
independently with mean zero and constant variance. :

(b) What are the properties of the least-squares regression line?

(P.U,B.A/B.Sc.1992) . .
' (¢) Show that the regression line passes through the means of )
. : observations. (P.U., D.St. 1962) £

10.5 (a) Describe briefly how you would obtain the line of regression
of one variable (Y) on another variable (X), using thn method
of least-squares. (P.U., B.A./B:Sc. 1975)

(b) What is meant by the standard error of estimate? If the
regression line of Y on X is given by Y=a+bX, prove thnt the . Ay
standard error of estimate s, . is given by «

L '10 e " Given the following bet of values:
X 20 11 15 10

' W 4 5 15 14 s

~ (a) Determine the equation of the T




